Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38474161

ABSTRACT

Obesity is a serious global health challenge, closely associated with numerous chronic conditions including type 2 diabetes. Anemarrhena asphodeloides Bunge (AA) known as Jimo has been used to address conditions associated with pathogenic heat such as wasting-thirst in Korean Medicine. Timosaponin A3 (TA3), a natural compound extracted from AA, has demonstrated potential therapeutic effects in various disease models. However, its effects on diabetes and obesity remain largely unexplored. We investigated the anti-obesity and anti-diabetic properties of TA3 using in vitro and in vivo models. TA3 treatment in NCI-H716 cells stimulated the secretion of glucagon-like peptide 1 (GLP-1) through the activation of phosphorylation of protein kinase A catalytic subunit (PKAc) and 5'-AMP-activated protein kinase (AMPK). In 3T3-L1 adipocytes, TA3 effectively inhibited lipid accumulation by regulating adipogenesis and lipogenesis. In a high-fat diet (HFD)-induced mice model, TA3 administration significantly reduced body weight gain and food intake. Furthermore, TA3 improved glucose tolerance, lipid profiles, and mitigated hepatic steatosis in HFD-fed mice. Histological analysis revealed that TA3 reduced the size of white adipocytes and inhibited adipose tissue generation. Notably, TA3 downregulated the expression of lipogenic factor, including fatty-acid synthase (FAS) and sterol regulatory element-binding protein 1c (SREBP1c), emphasizing its potential as an anti-obesity agent. These findings revealed that TA3 may be efficiently used as a natural compound for tackling obesity, diabetes, and associated metabolic disorders, providing a novel approach for therapeutic intervention.


Subject(s)
Anti-Obesity Agents , Diabetes Mellitus, Type 2 , Saponins , Animals , Mice , Obesity/metabolism , Steroids/pharmacology , Anti-Obesity Agents/pharmacology , Adipogenesis , AMP-Activated Protein Kinases/metabolism , Lipids/pharmacology , 3T3-L1 Cells , Diet, High-Fat , Mice, Inbred C57BL
2.
Int J Mol Sci ; 24(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569363

ABSTRACT

In this study, we investigated the potential anticancer effects of Viscum album, a parasitic plant that grows on Malus domestica (VaM) on breast cancer cells, and explored the underlying mechanisms. VaM significantly inhibited cell viability and proliferation and induced apoptosis in a dose-dependent manner. VaM also regulated cell cycle progression and effectively inhibited activation of the STAT3 signaling pathway through SHP-1. Combining VaM with low-dose doxorubicin produced a synergistic effect, highlighting its potential as a promising therapeutic. In vivo, VaM administration inhibited tumor growth and modulated key molecular markers associated with breast cancer progression. Overall, our findings provide strong evidence for the therapeutic potential of VaM in breast cancer treatment and support further studies exploring clinical applications.


Subject(s)
Breast Neoplasms , Viscum album , Humans , Female , Viscum album/metabolism , Breast Neoplasms/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Apoptosis , Signal Transduction , Cell Proliferation , Cell Line, Tumor , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...